Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization.

نویسندگان

  • Peter Charbel Issa
  • Alun R Barnard
  • Philipp Herrmann
  • Ilyas Washington
  • Robert E MacLaren
چکیده

Stargardt disease, an ATP-binding cassette, subfamily A, member 4 (ABCA4)-related retinopathy, is a genetic condition characterized by the accelerated accumulation of lipofuscin in the retinal pigment epithelium, degeneration of the neuroretina, and loss of vision. No approved treatment exists. Here, using a murine model of Stargardt disease, we show that the propensity of vitamin A to dimerize is responsible for triggering the formation of the majority of lipofuscin and transcriptional dysregulation of genes associated with inflammation. Data further demonstrate that replacing vitamin A with vitamin A deuterated at the carbon 20 position (C20-D3-vitamin A) impedes the dimerization rate of vitamin A--by approximately fivefold for the vitamin A dimer A2E--and subsequent lipofuscinogenesis and normalizes the aberrant transcription of complement genes without impairing retinal function. Phenotypic rescue by C20-D3-vitamin A was also observed noninvasively by quantitative autofluorescence, an imaging technique used clinically, in as little as 3 months after the initiation of treatment, whereas upon interruption of treatment, the age-related increase in autofluorescence resumed. Data suggest that C20-D3-vitamin A is a clinically amiable tool to inhibit vitamin A dimerization, which can be used to determine whether slowing the dimerization of vitamin A can prevent vision loss caused by Stargardt disease and other retinopathies associated with the accumulation of lipofuscin in the retina.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease.

Stargardt disease, also known as juvenile macular degeneration, occurs in approximately one in 10,000 people and results from genetic defects in the ABCA4 gene. The disease is characterized by premature accumulation of lipofuscin in the retinal pigment epithelium (RPE) of the eye and by vision loss. No cure or treatment is available. Although lipofuscin is considered a hallmark of Stargardt dis...

متن کامل

Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following Vitamin A supplementation.

PURPOSE Dietary supplementation with vitamin A is sometimes prescribed as a treatment for retinitis pigmentosa, a group of inherited retinal degenerations that cause progressive blindness. Loss-of-function mutations in the ABCA4 gene are responsible for a subset of recessive retinitis pigmentosa. Other mutant alleles of ABCA4 cause the related diseases, recessive cone-rod dystrophy, and recessi...

متن کامل

DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice.

Mutations in the photoreceptor-specific flippase ABCA4 are associated with Stargardt disease and many other forms of retinal degeneration that currently lack curative therapies. Gene replacement is a logical strategy for ABCA4-associated disease, particularly given the current success of traditional viral-mediated gene delivery, such as with adeno-associated viral (AAV) vectors. However, the la...

متن کامل

Gene Therapy of ABCA4-Associated Diseases.

The ATP-binding cassette (ABC) transporter gene, ABCA4 (ABCR), was characterized in 1997 as the causal gene for autosomal recessive Stargardt disease (STGD1). Shortly thereafter several other phenotypes were associated with mutations in ABCA4, which now have collectively emerged as the most frequent cause of retinal degeneration phenotypes of Mendelian inheritance. ABCA4 functions as an importa...

متن کامل

Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration.

Accumulation of vitamin A-derived lipofuscin fluorophores in the retinal pigment epithelium (RPE) is a pathologic feature of recessive Stargardt macular dystrophy, a blinding disease caused by dysfunction or loss of the ABCA4 transporter in rods and cones. Age-related macular degeneration, a prevalent blinding disease of the elderly, is strongly associated with mutations in the genes for comple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 27  شماره 

صفحات  -

تاریخ انتشار 2015